主机教程

主机教程,建站教程,编程学习教程
  • Python列表和元组的底层实现

    有关列表(list)和元组(tuple)的底层实现,本节分别从它们的源码来进行分析。

    首先来分析 list 列表,它的具体结构如下所示:

    typedef struct {
        PyObject_VAR_HEAD
        /* Vector of pointers to list elements.  list[0] is ob_item[0], etc. */
        PyObject **ob_item;
    
        /* ob_item contains space for 'allocated' elements.  The number
         * currently in use is ob_size.
         * Invariants:
         *     0 <= ob_size <= allocated
         *     len(list) == ob_size
         *     ob_item == NULL implies ob_size == allocated == 0
         * list.sort() temporarily sets allocated to -1 to detect mutations.
         *
         * Items must normally not be NULL, except during construction when
         * the list is not yet visible outside the function that builds it.
         */
        Py_ssize_t allocated;
    } PyListObject;

    有兴趣的读者,可直接阅读 list 列表实现的源码文件 listobject.h 和 listobject.c。

    list 本质上是一个长度可变的连续数组。其中 ob_item 是一个指针列表,里边的每一个指针都指向列表中的元素,而 allocated 则用于存储该列表目前已被分配的空间大小。

    需要注意的是,allocated 和列表的实际空间大小不同,列表实际空间大小,指的是 len(list) 返回的结果,也就是上边代码中注释中的 ob_size,表示该列表总共存储了多少个元素。而在实际情况中,为了优化存储结构,避免每次增加元素都要重新分配内存,列表预分配的空间 allocated 往往会大于 ob_size。

    因此 allocated 和 ob_size 的关系是:allocated >= len(list) = ob_size >= 0

    如果当前列表分配的空间已满(即 allocated == len(list)),则会向系统请求更大的内存空间,并把原来的元素全部拷贝过去。

    接下来再分析元组,如下所示为 Python 3.7 tuple 元组的具体结构:

    typedef struct {
        PyObject_VAR_HEAD
        PyObject *ob_item[1];
    
        /* ob_item contains space for 'ob_size' elements.
         * Items must normally not be NULL, except during construction when
         * the tuple is not yet visible outside the function that builds it.
         */
    } PyTupleObject;

    有兴趣的读者,可阅读 tuple 元组实现的源码文件 tupleobject.h 和 tupleobject.c。

    tuple 和 list 相似,本质也是一个数组,但是空间大小固定。不同于一般数组,Python 的 tuple 做了许多优化,来提升在程序中的效率。

    举个例子,为了提高效率,避免频繁的调用系统函数 free 和 malloc 向操作系统申请和释放空间,tuple 源文件中定义了一个 free_list: 

    static PyTupleObject *free_list[PyTuple_MAXSAVESIZE];

    所有申请过的,小于一定大小的元组,在释放的时候会被放进这个 free_list 中以供下次使用。也就是说,如果以后需要再去创建同样的 tuple,Python 就可以直接从缓存中载入。

更多...

加载中...