TensorFlow实现反向传播算法详解 反向传播(BPN)算法是神经网络中研究最多、使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重。 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信号从输入层通过隐藏层传播到输出层。在输出层,计算误差和损失函数。 反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度。接下来用梯度更新权重。 这两个过程重复迭代直到收敛。 前期准备 首先给网络提供 M 个训练对(X,Y),X 为输入,Y 为期望的输出。输入通过激活函数 g(h) 和隐藏层传播到输出层。输出 Yhat 是网络的输出,得到 error=Y-Yhat。其损失函数 J(W) 如下: 3,896/5,685« 首页3,8703,8803,890«3,8943,8953,8963,8973,898»3,9003,9103,920尾页 » 更多... 加载中...