LVM 最大的优势在于可以在不卸载分区和不损坏数据的情况下进行分区容量的调整,但是万一硬盘损坏了,那么数据一定会丟失。 本节讲的 RAID(磁盘阵列)的优势在于硬盘读写性能更好,而且有一定的数据冗余功能。
RAID 功能已经内置在 Linux 2.0及以后的内核中,为了使用这项功能,还需要特定的工具来管理 RAID,在绝对多数 Linux 发行版本中,更多的是使用 mdadm,读者可以自行下载并安装这个工具。
RAID(Redundant Arrays of Inexpensive Disks,磁盘阵列),翻译过来就是廉价的、具有冗余功能的磁盘阵列。其原理是通过软件或硬件将多块较小的分区组合成一个容量较大的磁盘组。这个较大的磁盘组读写性能更好,更重要的是具有数据冗余功能。
那什么是数据冗余呢?从字面上理解,冗余就是多余的、重复的。在磁盘阵列中,冗余是指由多块硬盘组成一个磁盘组,在这个磁盘组中,数据存储在多块硬盘的不同地方,这样即使某块硬盘出现问题,数据也不会丟失,也就是磁盘数据具有了保护功能。
读者也可以这样理解,RAID 用于在多个硬盘上分散存储数据,并且能够“恰当”地重复存储数据,从而保证其中某块硬盘发生故障后,不至于影响整个系统的运转。RAID 将几块独立的硬盘组合在一起,形成一个逻辑上的 RAID 硬盘,这块“硬盘”在外界(用户、LVM 等)看来,和真实的硬盘一样,没有任何区别。
RAID 的组成可以是几块硬盘,所以我们在讲解原理时使用硬盘举例,但是大家要知道不同的分区也可以组成 RAID。
RAID 根据组合方式的不同,有多种设计解决方案,以下介绍几种常见的 RAID 方案(RAID级别)。
RAID 0 也叫 Stripe 或 Striping(带区卷),是 RAID 级别中存储性能最好的一个。RAID 0 最好由相同容量的两块或两块以上的硬盘组成。如果组成 RAID 0 的两块硬盘大小不一致,则会影响 RAID 0 的性能。
这种模式下会先把硬盘分隔出大小相等的区块,当有数据需要写入硬盘时,会把数据也切割成相同大小的区块,然后分别写入各块硬盘。这样就相当于把一个文件分成几个部分同时向不同的硬盘中写入,数据的读/写速度当然就会非常快。
从理论上讲,由几块硬盘组成 RAID 0,比如由 3 块硬盘组成 RAID 0,数据的写入速度就是同样的数据向一块硬盘中写入速度的3倍。我们画一张 RAID 0 的示意图,如图 1 所示。