• Android运动传感器开发教程

    目前,Android 平台支持的运动传感器包括以下 5 种:

    • TYPE_ACCELEROMETER。
    • TYPE_GRAVITY。
    • TYPE_GYROSCOPE。
    • TYPE_LINEAR_ACCELERATION。
    • TYPE_ROTATION_VECTOR。

    本节教程将对这几种传感器的用法做简单介绍。

    加速度传感器

    获取加速度传感器实例的代码如下:

    private SensorManager mSensorManager;
    private Sensor mSensor;
    ...
    mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
    mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

    从传感器获取数据并计算三个方向的加速度的代码如下:

    public void onSensorChanged(SensorEvent event) {
        // In this example, alpha is calculated as t / (t+dT) ,
        // where t is the low-pass filter's time-constant and
        // dT is the event delivery rate.
    
        final float alpha = 0.8;
    
        // Isolate the force of gravity with the low-pass filter.
        gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
        gravity[1] = alpha * gravity[l] + (1 - alpha) * event.values[1];
        gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
    
        // Remove the gravity contribution with the high-pass filter.
        linear_acceleration[0] = event.values[0] - gravity[0];
        linear_acceleration[1] = event.values[1] - gravity[l];
        linear_acceleration[2] = event.values[2] - gravity[2];
    }

    该计算方法仅是举例使用,实际计算方法要针对应用而确定。

    重力传感器

    重力传感器是加速度传感器的一种,其数据处理方式也相似。此处不再重复重力传感器的数据计算方法。获取重力传感器的代码如下:

    private SensorManager mSensorManager;
    private Sensor mSensor;
    ...
    mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
    mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY);

    陀螺仪

    陀螺仪可以在三个纬度上测量设备的旋转情况。获取陀螺仪传感器的代码如下:

    private SensorManager mSensorManager;
    private Sensor mSensor;
    ...
    mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
    mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);

    从陀螺仪数据计算三个纬度旋转情况的代码如下:

    // Create a constant to convert nanoseconds to seconds.
    private static final float NS2S = 1.0f / 1000000000.0f;
    private final float[] deltaRotationVector = new float[4]();
    private float timestamp;
    
    public void onSensorChanged(SensorEvent event) {
        // This timestep's delta rotation to be multiplied by the current rotation
        // after computing it from the gyro sample data.
        if (timestamp != 0) {
            final float dT = (event.timestamp - timestamp) * NS2S;
            // Axis of the rotation sample, not normalized yet.
            float axisX = event.values[0];
            float axisY = event.values[1];
            float axisZ = event.values[2];
    
            // Calculate the angular speed of the sample
            float omegaMagnitude = sqrt(axisX * axisX + axisY * axisY + axisZ * axisZ);
    
            // Normalize the rotation vector if it's big enough to get the axis
            // (that is, EPSILON should represent your maximum allowable margin of error)
            if (omegaMagnitude > EPSILON) {
                axisX /= omegaMagnitude;
                axisY /= omegaMagnitude;
                axisZ /= omegaMagnitude;
            }
            // Integrate around this axis with the angular speed by the timestep
            // in order to get a delta rotation from this sample over the timestep
            // We will convert this axis-angle representation of the delta rotation
            // into a quaternion before turning it into the rotation matrix.
            float thetaOverTwo = omegaMagnitude * dT / 2. Of;
            float sinThetaOverTwo = sin(thetaOverTwo);
            float cosThetaOverTwo = cos(thetaOverTwo);
            deltaRotationVector[0] = sinThetaOverTwo * axisX;
            deltaRotationVector[1] = sinThetaOverTwo * axisY;
            deltaRotationVector[2] = sinThetaOverTwo * axisZ;
            deltaRotationVector[3] = cosThetaOverTwo;
        }
        timestamp = event.timestamp;
        float[] deltaRotationMatrix = new float[9];
        SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
        // User code should concatenate the delta rotation we computed with the current rotation
        // in order to get the updated rotation.
        // rotationCurrent=rotationCurrent * deltaRotationMatrix;
    }

    线性加速度传感器

    线性加速度传感器是传感器的一种。其获取实例的代码如下:

    private SensorManager mSensorManager;
    private Sensor mSensor;
    ...
    mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
    mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION);

    旋转向量传感器

    旋转向量传感器能反映出当前设备的状态,其返回值是旋转角度与旋转轴的集合。获取旋转向量传感器实例的相关代码如下:

    private SensorManager mSensorManager;
    private Sensor mSensor;
    ....
    mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
    mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

更多...

加载中...