TensorFlow实现反向传播算法详解

  • 内容
  • 评论
  • 相关

反向传播(BPN)算法是神经网络中研究最多、使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重。

学习 BPN 算法可以分成以下两个过程:

  1. 正向传播:输入被馈送到网络,信号从输入层通过隐藏层传播到输出层。在输出层,计算误差和损失函数。
  2. 反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度。接下来用梯度更新权重。

这两个过程重复迭代直到收敛。

前期准备

首先给网络提供 M 个训练对(X,Y),X 为输入,Y 为期望的输出。输入通过激活函数 g(h) 和隐藏层传播到输出层。输出 Yhat 是网络的输出,得到 error=Y-Yhat。其损失函数 J(W) 如下:



 

本文标题:TensorFlow实现反向传播算法详解

本文地址:https://www.hosteonscn.com/4229.html

评论

0条评论

发表评论

邮箱地址不会被公开。 必填项已用*标注